Watershed Analysis of the Mesoamerican Reef Region:

Application of the Nonpoint Source Pollution and Erosion Comparison Tool (N-SPECT)

> Zachary Sugg World Resources Institute

Outline

Description Functions & Capabilities Applying to MAR **Data Requirements** Watershed Delineation NSPECT Analysis Concepts: Runoff Pollution Erosion

Description (What is N-SPECT?)

- GIS-based tool for estimating and comparing nonpointsource pollution and erosion.
- Extension compatible with ArcGIS 8.x and 9.x
- Public domain; developed by NOAA Coastal Change Analysis Program (CCAP), 2004.
- Initially developed for Wai'anae region, Oahu, Hawaii.
- Transferable can be utilized in any location where input datasets are available.
- Flexible: adaptable to local areas, different time scales.
- Answers questions about effects of land cover change on water quality in watersheds.
- Relatively short processing times.

Functions & Capabilities

Rainfall-runoff model U.S. Soil Conservation Service (SCS) curve number technique Pollutant model **Concentration coefficients** Sediment yield model Universal Soil Loss Equation (USLE) Modified (MUSLE) Revised (RUSLE)

Data Requirements

Land Cover grid Elevation (DEM) Precipitation grid Soils shapefile Hydrologic soil group grid Soil erodibility (K) grid. Rainfall Erosivity (R) Factor grid Pollutant/Nutrient Coefficients Water Quality Standards

NOAA CCAP

Applying N-SPECT to the MAR region

Adapt model to the region (data needs) Run several analyses to predict water quality changes. Annual **Erosion/Sediment loads** Pollutant loads Extract outputs to pour points

Performing Analyses with N-SPECT: Key Concepts

Watershed Delineation Runoff volume Pollutants (accumulation & concentration.) Sediment Delivery (accumulation & concentration)

Photo: WWF, Sylvia Marin

Concept 1: Watershed Delineation in N-SPECT

Why important? Topography (DEM) Other grids derived from **DEM** Analysis extent & overlay Watershed boundary shapefile the basic unit for all analyses

Watershed Delineation Process (in N-SPECT)

N-SPECT requires its own delineation based on a user's Digital Elevation Model (DEM) Creation of basins polygon shapefile FILL command Determines flow direction to locate streams. BASIN command to delineate drainage basins based on ridgelines of DEM and pour points. Very small watersheds, problematic areas of very low relief aggregated into larger watersheds.

Watershed Delineation: DEM preparation

First step: creating input DEM (burn_20pos)

DEM developed from 90m resolution NASA SRTM data resampled to 250m; water bodies "burned" at -20m relative to surface of DEM

 NSPECT considers negative values sinks, so the DEM was raised 21m to eliminate all negatives and preserve the burn.

NSPECT then fills in actual sinks.

DEM Setup: New Watershed Delineation menu

- 1st step = input DEM
- Hydrologically corrected?
- Units
- Subwatershed size: small, medium, or large.
 - Subwatershed size is relative to DEM based on flow accumulation.

Based on the following conditions: Small = 0.1% of max flow acc value Medium = 1% Large = 10%

5	New Watershed D	elineation	X
[- Create a new watersh	ed delineation	
	Delineation Name:		
	DEM Grid:		
		DEM is hyrdologically correct (filled)	
	DEM Units:		
	Subwatershed Size:	•	
		OK Cancel	

🕏 Watershed Delineations	
Options Help	
Browse Watershed Delineations Watershed Delineation Name:	Waianae
DEM Grid:	C:\NSPECT\WaianaeData\dem
Units:	meters
	Hydrologically Corrected DEM
Subwatershed Size:	medium
Watershed:	C:\NSPECT\wsdelin\Waianae\basinpoly
Flow Accumulation Grid:	C:\NSPECT\wsdelin\Waianae\flowacc
LS Grid:	C:\NSPECT\wsdelin\Waianae\LSGrid

Watershed Delineation: Location & Key Output data

Basin polygon shapefile
Basin grid
Flow direction grid
Flow accumulation grid
LS Factor grid

N-SPECT Concept: Runoff Estimation

Soil characteristics, land cover, topography and *precipitation* determine **runoff**

Runoff: Inputs required

Rainfall grid (annual or event)
Elevation (DEM)
Runoff Curve numbers
Soil (hydrological group)

Precipitation

Elevation

Flow Direction & Accumulation

Resolution & processing time

Land Cover (Runoff Curve Numbers)

Runoff: SCS Curve Number method

Developed by USDA-NRCS

- Curve numbers based on soil traits & represent permeability.
- Range: 0 (100% infiltration) to 100 (0% infiltration).
- Gridded by NSPECT, derived from <u>land cover</u> and <u>hydrologic soil group</u>.
- Runoff depth
- User-adjustable
- For more on actual processing equations, see tech guide.

	Classification		SCS Curv	e Numbers		Г	RUSL	E
Value	CN-A	CN-B	CN-C	CN-D		Cover-Factor	Wet	
2	High Intensity Developed	0.89	0.92	0.94	0.95	0		
3	Low Intensity Developed	0.61	0.75	0.83	0.87	0)3	
4	Cultivated Land	0.67	0.78	0.85	0.89	0	24	
5	i Grassland	0.39	0.61	0.74	0.8	0)5	
1 7	'Evergreen Forest	0.3	0.55	0.7	0.77	0	004	
9	Scrub/Shrub	0.3	0.48	0.65	0.73	0	014	
10) Palustrine Forested Wetlan	0	0	0	0	0	003	
16	Unconsolidated Shore	0	0	0	0	0	5	
17 Bare Land		0.77	0.86	0.91	0.94	0	7	
18	} Water	0	0	0	0	0		
	L							

Hydrologic Soil Group

Ē	3 La	nd Cov	/91	Types	Ŭ					×]	
	La	nd Cove Desc	r Ty rrint		•							
	-		- pe	Classification	CCC Current Number				BUSU	DUCLE		
	Value Name			L Chi à					-			
	<u> </u>	Val	ue	Name List Istansity Developed	CN-A					Wet	200	
			2	Low Intensity Developed	0.03	0.32	0.34	0.30	0 002		1000	
			1	Cultivated Land	0.61	0.75	0.05	0.07	0.03	-8-1	1916	
			5	Grassland	0.07	0.70	0.03	0.05	0.05	-8-1	200	
66			7	Evergreen Forest	0.3	0.55	0.7	0.77	0.004		1.00	
			9	Scrub/Shrub	0.3	0.48	0.65	0.73	0.014	- H		
		- 19	10	Palustrine Forested Wetland	0	0	0	0	0.003			
		13	16	Unconsolidated Shore	0	0	0	0	0.5		100	
			17	Bare Land	0.77	0.86	0.91	0.94	0.7		200	
		19	18	Water	0	0	0	0	0		1.00	
Hydr	ologio Gro	c Soil oup				Soil Grou	p Charact	eristics				
	A		S	oils having high infiltration rate excessively-drained sand	es, even wł ls or gravel	nen thoroug s. These s	hly wetted oils have a	and consis	sting chiefly of deep of water transmissio	, well- to n.		
	В		Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, and moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.								deep, nission.	
	С		S	oils having slow infiltration rate downward movement of w water transmission.	es when the water, or so	oroughly wo bils with mo	etted and c derately fir	consisting one to fine te	hiefly of soils with a exture. These soils l	layer that imp nave a slow ra	bedes ate of	
	D Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or is surface, and shallow soils over nearly impervious material. These soils have a very slow rate of v transmission.								bils with a higl yer at or near v rate of water	h the r		

 Runoff volume (L) (annual or event)
 Runoff depth
 Runoff curve number grid

Runoff: Outputs

N-SPECT Concept: Pollutants

Eutrophication, algal blooms, closed beaches and shellfish beds, human health impacts through accumulation in food chain. (Arnold & Gibbons, 1996)

Runoff, land cover, topography and pollutant coefficients determine pollutant loads

Pollutants: Inputs

Rainfall grid (annual or event)
 Elevation (DEM) derivatives
 Soil (hydrological group)
 Pollutant Coefficients

- Expected pollutant mean concentration from each land cover type
- Ideally, locally derived from WQ and land cover data.

Pollutants: Coefficient Method

tants	Coefficien	ts Help				
Polluta	int Name:	Nitrogen 📃 💌				
Coeffi	cients Wat	er Quality Standards				
Coef	ficient Set:	NitSet 💌	Land Cov	er Type: 🛛	CAP.	
Des	cription:	Nitrogen Coeff Set				
		Class		Co	efficients	
	Value	Name	Type1	Type2	Type3	Type4
	2	High Intensity Developed	2.22	0	0	0
	3	Low Intensity Developed	1.77	0	0	0
	4	Cultivated Land	2.68	0	0	0
	5	Grassland	2.48	0	0	0
	7	Evergreen Forest	1.25	0	0	0
		Scrub/Shrub	1.25	0	0	0
-	9			-	0	0
	9 10	Palustrine Forested Wetland	1.1	0	U	10
	9 10 16	Palustrine Forested Wetland Unconsolidated Shore	1.1 0.97	0	0	0
	9 10 16 17	Palustrine Forested Wetland Unconsolidated Shore Bare Land	1.1 0.97 0.97	0	0	0

Pollutants: Output

3	Wat	ter Quali	ty Standards		
Opt	ions	Help			
St	tand	ard Name:	Long Term Criteria	•	2
D	escr	iption:	Acute levels (toxics) & levels (not to exceed > 10% of the tim	
			Pollutant	Threshold (ug/l)	
		Phosphor	us	50	
		Nitrogen		250	
		Total Susi	pended Solids	20	
		Zinc		22	
		Lead		29	
	<u> </u>				
					10
· ·	,				
				OK Cancel	

- Accumulated Pollutant (kg)
- Pollutant Concentration (mg/L)
- Comparison to water quality standard (exceeds or below standard)
 - Short, moderate, and long-term

Water quality standards

 Concentration output compared to local standards – meet or exceed criteria?
 Short, moderate, or long term.

۵.	Wai	ter Quali	ity Standards				
Opti	ions	Help					
St	and	ard Name:	Long Term Criteria	•			
D	escr	iption:	Acute levels (toxics) & levels	not to exceed > 10% of the tim			
	_	1					
			Pollutant	Threshold (ug/l)			
	Phosphorus 50						
		Nitrogen		250			
		Total Sus	pended Solids	20			
		Zinc		22			
		Lead		29			

N-SPECT concept: Erosion

Runoff, topography, soil characteristics, and *land cover* determine <u>sediment loads</u>.

Erosion: USLE method

- Sediment yield & concentration
 Universal Soil Loss Equation
 Annual & Event (RUSLE & MUSLE)
 RUSLE: A = R * K * L * S * C * P
- Where:
 - A = avg. annual soil loss
 - R = rainfall/runoff erosivity factor
 - K = soil erodibility factor
 - L = slope length factor
 - S = slope steepness factor
 - C = cover management factor
 - P = supporting management practices factor

MUSLE method: Event based

- For single event precip scenarios
- Can locally calibrate equations for sediment yield.
- Q = storm runoff volume (acre-ft)
- q_p = peak runoff rate (ft³/second)
 - "Maximum volume of flow attained at a given point in a stream during a runoff event."

🛱 Soils Setup 🛛 🔀
Name:
DEM GRID:
Soils Data Set:
Hydrologic Soil Group Attribute:
K Factor Attribute:
Advanced MUSLE Specific Parameters MUSLE Equation for sediment yield: 95 * (Q * qp) ^{0.56} * K * C * P * LS Locally calibrated MUSLE equation for sediment yield being used by N-SPECT: 18.943 * (Q * qp) ^{0.877} * K * C* P * LS
OK Cancel

Erosion Inputs

DEM (LS Factor)
Land cover grid (C Factor)
Soils (K-factor) grid
Rainfall grid
Rainfall erosivity (R-factor) grid.

Key RUSLE inputs: R-Factor

"Quantifies the effects of raindrop impact and amount and rate of runoff associated with the rain." - USDA

- Preferable to derive R-factor empirically from actual rainfall data. OK for U.S. but not always available in other places.
- Many studies in literature have derived region-specific equations incorporating precipitation or precipitation & elevation.
- Sediment load output from several R-factor regression equations compared statistically to each other and to a physical model at Texas A&M. (see documentation on cd for more info on R-Factor and MAR implementation).

Equation determined to be most appropriate for MAR region:

R = 3786.6 + 1.5679(Precip in mm) - 1.9809(Elevation in m)

Erosivity grid for MAR generated from annual precip grid and DEM

R-factor conversion for N-SPECT

R = 3786.6 + 1.5679 * (Precip in mm) – 1.9809 * (Elevation in m)

 Output in metric units MJ * mm * ha⁻¹ * h⁻¹ * y⁻¹ (megajoule * mm / hectare * hour * year)

However, N-SPECT requires US units: hundreds of feet * tonf * inch * acre⁻¹ * hour⁻¹ * year⁻¹

Convert by Dividing by the conversion factor, 17.02.

Reference: USDA-ARS Agriculture Handbook No. 703

R = 3786.6 + 1.5679(P) - 1.9809(E)

Key Input 2: K-factor

 Soil erodibility
 Average longterm soil response to stormwater erosion

 "Lumped" parameter. based on several different hydrologic soil processes.

 Contained in soil attribute table.

Ton * acre * hour / acres * tonf * feet * inch

Land Cover (C) Factor

Descrip	Classification		SCS Curv	e Numbers		RUSLE	2
Value Name			CN-B	CN-C	CN-D	Cover-Factor Wet	
2	High Intensity Developed	0.89	0.92	0.94	0.95	0	
3	Low Intensity Developed	0.61	0.75	0.83	0.87	0.03	
4	Cultivated Land	0.67	0.78	0.85	0.89	0.24	
5	5 Grassland		0.61	0.74	0.8	0.05	
7	Evergreen Forest	0.3	0.55	0.7	0.77	0.004	
9	Scrub/Shrub	0.3	0.48	0.65	0.73	0.014	
10	Palustrine Forested Wetland	0	0	0	0	0.003	
16	Unconsolidated Shore	0	0	0	0	0.5	
17	Bare Land	0.77	0.86	0.91	0.94	0.7	
18	Water	0	0	0	0	0	

- Complex coefficient representing impact of land management/cover on soil loss.
- Higher value = higher level of soil loss

Erosion: Output GRIDs

Accumulated Sediment (kg)

Total amount of sediment accumulated over a year's time

Sediment concentration (kg/L)

Local Effects

Contributions of single cells independent of upstream contributions through time. Pollution and erosion generated by single cells, groups of cells, with no input from upstream sources.

Land use & Management scenarios

Not utilized for MAR region Allows you to overlay vector layers representing different land cover types and management scenarios. Compare effects of change on pollution and erosion. Additional training resources (Hawaii) available with N-SPECT.

Future improvement/adjustment

Adapt to other regions Calibrate to real discharge and sediment Develop local pollutant coefficients Additional pollutants More detailed land cover/new curve #'s and cover factors Finer scale Locally accurate number of rainy days Higher res. Precip, DEM, & R-factor

N-SPECT Resources on CD

Additional basic and advanced training exercises

User's manualTechnical guide

Updates on web at http://www.csc.noaa.gov/crs/cwg/nspect.html